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Abstract: Some new results which impact favorably upon the issue of automated topographic map interpretation
are presented. Actually, the "new" results consist of heretofore undiscovered applications of two concepts known to
mathematicians and computer scientists for many years: binary search, and the normal vector. Binary search is
extended by the technique from not only one to two dimensions, but arguably to three dimensions, since
topographical maps are two-dimensional representations of three-dimensional surfaces. Such maps are essentially
sorted hierarchies of nested contours, which form a multiply-connected subdivision of the plane. The perimeter of a
subdivision element is defined by a set of contours of extremal elevation and the edges of the map; a naming
convention attaches a label to each element of the planar subdivision. Whenever one is afforded the luxury of dealing
with a sorted data structure, one may invoke the power of binary search to achieve O[ log n ] time complexity during
processing of a topographical query, where n is the number of contours which comprise a specific element of the
planar subdivision. A topographical query is a request by a user to interpret the position of an arbitrary map
coordinate, called the query point, in the context of a topographic map background. An "interpretation" as currently
defined consists of a five-tuple of information: the label of the map subdivision element within which the query
point resides; the topographical contour of the subdivision element within which the point minimally resides; the
local slope at the point; the local elevation at the point; and the flank of the partition element (hillside) upon which
the point is situated. As an example, the following list is an interpretation of a query point: (Mt. Hood subdivision,
contour #10600-d, 65 degree gradient, 10655 feet elevation, 350 deg NW). As is the case with one-dimensional
binary search, the two-dimensional version must concern itself with items having identical keys. Because
topographical maps may contain multiple contours lying at the same elevation, the topographical query process
must have a mechanism for choosing among "I =m before proceeding. Thus, when "halving the interval", one must
check to ensure that the interval is in fact uniquely def'ied. Inclusion testing within contours is achieved with a
deterministic point-in-polygon algorithm developed by the Army in previous research. The traditional normal vector
is utilized extensively by the point-in-polygon algorithm, and also by the processing components which interpolate
slope and elevation, and determine hillside emplacement. A new theorem derived from the law of cosines provides a
decision rule based on integer arithmetic to decide which segments of a polygonal boundary justify a computation of
the normal vector. As a byproduct of the research, an algorithm based on the Cevian formula has been developed to
find the nearest segment to a query point, without using any floating point operations whatsoever. Future research
issues include the topic of visual line-of-sight (binary map coloring) from a query point, and an analysis of the space
and time complexity of the new technique, vs. the more burdensome alternative of storing elevation and slope data in
large raster archives.

I. BACKGROUND AND TERMINOLOGY

Topographic Line Maps.

A topographic line map (TLM), also known as a contour map, is a vector representation of the boundaries
of cross sections of the earth's surface. The projection of the boundary of a cross section of the earth's surface onto
the xy-plane is called a topographic contour. The equispacing between cross sections along the z axis is called the
contour interval of the map. A contour map is bounded by the rectangular edges of a map sheet. The edges of a map
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form what is called a clipping region, which prevents an observer from knowing the behavior of portions of contours
which pass outside the rectangular perimeter of the map.

Heuristics to guide map understanding soon become apparent to a novice: e.g., when contours are closely
packed together in the xy-piane, the underlying terrain is steep; when far apart, the terrain is flat, or of gentle
gradient. As a general rule, contours do not cross, although there are rare exceptions such as natural bridges.
overhangs, or bizarre sandstone formations like those found in Utah. For those well-versed in their interpretation,
topographic maps can provide a realistic portrayal of actual terrain. However, many human beings find topographic
maps difficult to interpret, and have problems visualizing terrain from contour data. It is for this reason that the
Army Topographic Engineering Center has opted to utilize perspective displays as an alternative to topographic
maps [Ti]. Perspective displays render an artistic version of a terrain as it appears from same vantage point near or
upon the ground. Figure 1 is a graphic borrowed from reference [K41, and portrays a perspective display of a terrain,
together with its corresponding topographic contour representation.

Figure 1. A perspective display and its corresponding topographic line map.

Interpreting a Topographic Line Map.

The objective of automated topographic map interpretation is to write a computer algorithm which locally
describes a random query point in the context of a contour map. An interpretation as currently defined consists of
five pieces of information: the label (if it exists) of the subdivision within which the query point resides; the name
of the topographic contour which brackets the query point from outside; the elevation above or below sea level at the
query point; the slope of the terrain at the query point; and the directional gradient at the query point. As an
example, the following list constitutes an interpietation of a query point: (Mt. Hood subdivision, contour #10600-d,
65 degree gradient, 10655 feet elevation, 350 deg NW).



The five pieces of information currently sought by the algorithm hardly constitute a complete interpretation
of a query point. Other descriptors are desirable in the long term: e.g., the visual line-of-sight from the query point,
the profile of a traversible path passing through the query point, the profile of a path which optimally avoids the
query point. the feasibility of using the query point as a site for sensor placement, etc. However, the five primitive
data currently being returned by the algorithm go far toward providing inputs to some of the higher level queries,
which may be synthetically constructed from the primitive queries.

Contour Notation.

In this section, notation is adopted to facilitate reasoning with topographic contours. Associated with every
contour is a specific value, denoted El(C), which represents the contour's elevation above or below sea level. The
elevation is modulo k, where k is the fixed contour interval of the topographic map. On a particular map, there may
be several distinct contours with the same elevation value; for spatial reasoning applications it is important to
differentiate among them. Each contour with an elevation value above sea level is contained within another contour,
and may itself contain contours.

If contour C1 is contained within contour C2, then C1 is said to be nested within C2 . A contour cannot be
contained within two or more contours which are not nested, but it can contain multiple contours which are not
nested. If C is a contour of interest, then we denote the contour which minimally contains C to be C-. By
minimally contained, it is meant that any other contour D other than C- which contains C also contains C-, which
implies that both C- and C are nested within D. A contour minimally contained by C is called C+, where the set of
all such contours is denoted {C+). If a query point lies between two elements of (C+), then it is said to be a saddle
point. Note that {C+} may be the null set. A graphic illustrating these concepts is shown below.

Contour Notation: C, C-, and {C+}

Contour C+ is inside contour C, which is inside Contour C7.

c-+

{C+={ C+ 1 , C+2 , C+3

Figure 2. An illustration of contour containment.



A query point and its bracketing contours.

A query point is defined to be any random point of interest Except for special cases, a query point is
bracketed by adjacent contours of a map: one contour which encloses it, called the outer bracket, and another contour
which does not enclose it, called the inner bracket. Since contours are well-ordered at cluispaced elevations, the
difference in elevation between bracketing contours is equal to plus or minus the fixed contour interval of the map
(except for a zero difference at saddle or culvert points). The figure below illustrates the brackets of a query point.

A Query Point and its Bracketing Contours

p =query point

C = outer bracket

C+ = inner bracket

Figure 3. Bracketing a query point from within and without.

II. TWO-DIMENSIONAL BINARY SEARCH APPLIED TO TOPOGRAPHIC MAPS.

Extending binary search to two dimensions to interpret topographic maps.

Binary search has traditionally been applied to a one-dimensional data structure, sorted by some user-defined
ordering property. The data structure might be an array of numbers sorted by the natural ordering of the reals, or a
list of employee records sorted alphabetically by name. One commonly utilized data structure is 2D trees, in which
the data consists of a set of ordered pairs of integers. In a 2D tree, the data is sorted on two keys (the abscissa and
the ordinate), with one key primary. A 2D tree is not a true instance of two dimensional binary search data structure,
because one key is predominant over another during the sorting process. A better candidate is outlined at [K2], in
which an interior point method for linear programming "halves" an ellipse during point-in-polygon testing.
However, to be truly elegant, two dimensional binary search should avail itself of the natural containment property
inherent to two dimensions. In the digital domain of the computer, two dimensional objects are in general
polygons. Just as the one dimensional version must check to see if a point ties between two other points, the two-
dimensional version is required to decide if a polygon is contained "between" two other polygons [C1]. Betweenness
is equivalent to bracketing a query point with nested polygons.

Topographical contours exhibit a natural ordering due to the way in which the forces of nature have
combined to stabilize the crust of the earth. For example, gravity has assured that the top portion of a mountain has



a smaller cross section than its base. Thus, when projected onto a plane, contours from the same mountain appear
to be nested. Ordering by elevation, and nesting by containment are properties which may be exploited to sort
contours. The data structure which results by appealing to a two-dimensional sort on elevation and nesting is called
the contour containment graph. The motivation is that to exploit the O[ log n I query power of binary search, one
requires that the underlying data structure be sorted. We will see below that there are two preprocessing steps
required to set up an efficient two-dimensional search of topographic maps: the first is the construction of the
contour containment graph, and the second is the partitioning of the containment graph into regions suitably indexed
for binary search.

The Contour Containment Graph, and Labeling of Topographic Features.

As a first step in constructing the contour containment graph, we can uniquely label each contour, and then
sort all contours on elevation, in ascending order. We then "nest" contours. To illustrate, suppose a specific 100-
meter contour is labeled, and the contour interval of the map is 10 meters: we now seek to find all 110 meter
contours contained within the labeled contour. If we find one, we create a pointer from the 100-meter contour's label
to the label of the 110 meter contour discovered to be contained in the contour. We continue this process until no
more contours are found to be within the 100-meter contour. We repeat this operation for all other 100-meter
contours. When this step is completed, we switch our baseline cell complex from all those bounded by 100-meter
contours to all those bounded by 1 10-meter contours, and continue the process until there am no contours remaining
to be processed. An example of a terrain and its contour containment graph is depicted in the figure below. The
terrain features three hills. All three are contained within baseline contours of twenty and forty meters elevation.
Note that a label may be associated with the forty meter contour to delimit the extent of the "hill country". Also, a
label may be installed on each of the sixty meter contours to name the individual hills. One of the three hills
contains two smAll knobs at the top, at an elevation of one hundred twenty meters. Each time that the set (C+)
contains multiple elements for a given contour C, another level of sorting must be initiated to assure that the
contour containment graph is properly stra'tured and nested for binary search.
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Figure 4. A sorted terrain, nested In preparation for binary search.



Within each level of a contour containment graph, binary search may be invoked to achieve O[ log n I time
complexity, where n is the number of contours contained at that level. To illustrate, in the figure below, a hill is
represented by eight contours. On the first iteration of binary search, a contour halfway up the hillside at eighty
meters is considered, and the query point is determined to be inside. On the second iteration, it is determined that the
query point is not inside the one hundred twenty meter contour, which is three quarters of the way up. The third
iteration decides that the point is not inside the one hundred meter contour, which is five eighths of the way to the
top. At the next iteration binary search concludes, having bracketed the query point between the eighty and one
hundred meter contours, while having interrogated only three of the eight contours.

a - a contom' 2*

Is p inside 1O-Wner cnow? /
- yes

Is P inside mi0nde Ca~omm?
- No

Is p inside 100-inewe contolr?
- •No

Number of contoum seched P

. 428=3 36

Conclusion: p is between an
80-meter contour and a
100-meter contour, at about 85
meters altitude, on a moderate
slope of about 30 degrees, which
faces roughly northwest.

Figure 5. Binary search brackets a query point.

Although two-dimensional binary search may achieve O[ log n I time complexity over a database of n
contours, the issue remains open regarding the time complexity of the search as a function of the number of vertices
contained within a given contour. For example, one topographic contour may contain a single vertex, whereas
another may contain thousands of vertices. Processing a set of contours comprised of a small number of vertices is
clearly more desirable for performance consideratiors than processing a set of contours comprised of a large number
of vertices. An objective metric of time complexity should take into account both the number of contours and the
number of vertices per contour.

Partitioning a Topographic Map for Binary Search.

Any topographical map contains contours of locally minimum elevation. These are readily identified from
the contour containment graph developed in the preceding section. The strategy is to partition the map between all
such contours, by constructing synthesized boundaries to act as cuts for binary search. Optimal placement of the cut
boundaries is a load balancing problem, which needs to address not only the number of contours within each cut, but
the total number of vertices which comprise contours in the cut. In the diagram below, four hills have been
partitioned by synthesized boundaries into regions suitable for binary search. Note that the bold lines are not
contours but synthetic boundaries. The first cut runs roughly down the middle of the map, and segregates the
rightmost hill from the other three. Observe that the first cut contains nine contours on the left, but only seven on
the right. This is not arbitrary, but is designed to compensate for the longer perimeters of the contours on the right
of the cut (it is implied that a longer perimeter equates to a larger number of vertices in the contour boundary data).



The second cut is dependent upon the decision made during the fitr cuL If a query point is to the left of the fiur cut,
then the second cut lies between the two most northerly hills and the hill in the southwest corner. Conversely, if
the query point is to the right of the first cut, then the second cut lies halfway up the rightmost hill. Continuing in
this fashion, the number three cuts are synthesized. No further cuts are shown, but the logic to create them is
similar.

Partitioning a Contour Map for Binary Search<=>
312

Bold lines are synthesized for • "• "•i
binary search.

Figure 6. Load balancing a contour map to create a two-dimensional binary tree.

Dealing with contours which exit the clipping region of a map.

Figure 6 is oversimplified. In gencial, contours are not so well-behaved. There is one common problem to
consider a contour may exit the rectangular region bounding the map, and therefore pass outside the clipping
region. The problem may be solved by conjoining the troublesome contour with the rectangular edge of the map.
This contrivance forces two polygons to be synthesized from the errant contour, to create a data structure compliant
with two-dimensional binary search. Synthetic boundaries for binary search may also be constructed accordingly.

The figure below depicts a clipped contour of forty meter elevation which exits the map at both sides. Two
dimensional binary search requires that data structures be in the form of polygons. We synthetically create two new
polygons by conjoining the clipped contour with the edges of the map. Because the point-in-polygon algorithm of
choice (described in the next section) requires a sense of handedness, we assure that the vertices of the new polygons
are in counterclockwise order. At execution time, we may now ask if a query point is contained within either the
upper or the lower polygon manufactured by utilizing the clipped contour, and proceed accordingly.



Clipping
Region 4

40

Figure 7. Creating two polygons from a clipped contour.

III. AN INCLUSION (POINT-IN-POLYGON) ALGORITHM, AND PROXIMITY.

Perceived shortcomings of currently available point-in-polygon technology.

The two-dimensional binary search algorithm requires a utility function to establish whether or not a query
point is inside a topographical contour. The utility function is a true workhorse, so it must be efficient. There is
no margin for error, which means that point-in-polygon algorithms which rely on the precision of machine
arithmetic are inappropriate candidates. For this reason, approaches based on the winding number or the parity
algorithm are currently infeasible. The Apple Macintosh family of computers has implemented a predicate called
"point-in-region-p", available as part of the Quickdraw graphics repertoire, but the predicate consumes quadratic
amounts of region space in memory, which becomes prohibitive for even a moderate number of polygonal
boundaries. A high-performance algorithm from the computational geometry literature, based on triangulation [K3],
is a viable candidate, although it remains an untested quantity, since it has never been tasked against a multi-
megabyte database of topographical contours.

Because of perceived shortcomings of on-the-shelf point-in-polygon algorithms, and the lack of benchmark
data to test the performance of the triangulation algorithm, the author has opted to implement his own algorithm
[C2], which has been extensively tested against actual contour data. The algorithm assures that a contour is oriented
in a counterclockwise direction, so that the interior of the contour is to the left during traversal. Inclusion testing is
then conducted as a function of a query poinfts proximity to a contour (see figure below). One benefit of the
algorithm is that it returns distance and direction (normal vector) to the nearest point on a boundary, in addition to
the inclusion decision. As will be seen below, the normal vector is crucial to topographic map interpretation. As
originally conceptualized, the algorithm anticipated that every pixel in a digital boundary would be explicitly
available as part of the data structure. However, the Defense Mapping Agency does not represent feature boundaries
so obviously. Instead, a contour is provided in chain-coded format, where the boundary of the contour consists of a
set of ordered vertices. It is up to the user of the data to create the edges which join the vertices.



Proximity and Inclusion of a Query Point p to

Contour C

e 0. C is a set of chain-coded vertices
with implied edges.

t 1. Order C counterclockwise.
ccw1

2. Selectively drop normal n to C.

3. If magnitude of n < magnitude of
all other normals, then p is closest
to edge e of contour C.

4. If p is to the right of C, it is
outside; otherwise it is inside.

Figure S. The normal vector may be used to decide Inclusion.

The Voronoi diagram for data produced by the Defense Mapping Agency.

Vector data distributed by the Defense Mapping Agency (DMA) contains three kinds of objects: points,
line segments, and polygons. It has been known for some time that the skeleton, or medial axis of a polygon
consists of portions of parabolas and line segments [12]. The parabolas are the locus of equal distance between
points and segments. The line segments are the locus (angle bisectors) between extended segments. It is also true
that for any set of points, segments, and polygons the equidistance locus consists of parabolas and line segments.
Thus, the Voronoi diagram for DMA data, which is defined to be the locus of equal distance, is in general parabolic.

There is currently no commercial product available to generate the parabolic Voronoi diagram for an
arbitrary set of polygons, segments, and points. However, there are three research and development tools (of varying
degrees of robustness) circulating among researchers -T, academia [M31. The developmental products implemented to
date have encountered problems of numerical precision, primarily when deciding upon which side of a parabola a
query point lies [F21. However, as indicated at reference [El], the theory behind the sweepline algorithm [Fl] to
generate the linear Voronoi diagram should be directly extensible to the parabolic diagram. It is clear that for the
asymptotic solution to the static proximity problem, the Voronoi diagram is the paradigm of choice. As a stopgap
measure, until a tool to generate the parabolic diagram is available, the author has developed his own proximity
algorithm, described below, based on restricted use of the normal vector. The author's algorithm, unlike the Voronoi
diagram, facilitates dynamic objects. If an object's position changes, the Voronoi diagram must reinvoke a relatively
expensive preprocessing step, whereas the author's algorithm simply replaces the object's old boundary position with
the new.



Finding the nearest point of a contour to a query point.

A contour, which when represented with digital data is in the form of a polygon, consists of a set of
vertices and the implied edges which connect the vertices. Thus, when one speaks of proximity to a contour from a
query point, one is actually referring to minimal Euclidean distance to the set of vertices, vs. distance to the set of
edges.

Minimal distance to an edge is non-trivial to compute. This process entails dropping the normal vector
from a query point to the edge. Since floating point operations may be required at every edge to which the normal is
dropped (although the author introduces below a new technique which avoids floating point arithmetic), we would
like to limit the number of edges incurring such an expensive operation. If the normal vector strikes an edge
directly, the edge is said to be admissible to the normal vector. Refer to the figure below. Clearly, it does not
behoove us to drop the normal from query point p to edge e2, since the tip of the normal does not even inte, sect e2,
but rather its extension. Such cases are precisely those which we strive to avoid, by appealing to a normal vector
admissibility filtering technique. It will be shown below that as a side effect, the filtering technique returns minimal
distance to a vertex.

Normal Vector Admissibility

e 1 is admissible;
P n2e 2 is not

n, e,
Contour boundary e3el - e2- e3 . . .

Figure 9. Certain contour edges do not admit the normal vector.

Derivation of edge admissibility conditions from the law of cosines.

Construct orthogonal rays from the endpoints of contour edge e, as in Figure 10 below. Now suppose that
query point p lies between the rays. Note that the angle between edges x and e is acute, as is the angle between
edges y and e. Let the angle between y and e be 01 and the angle between x and e be 02. Then, by the law of
cosines,



x2 = y2 + e2 -2 y e cos 01 [1]
y2 = x2 + e2 -2 x e cos 02 [2]

The cosine function is positive for acute angles. We therefore obtain

x2 + al = y2 + e2  [3]

y2 + a2 = x2 2 + e2 ; cl, a2 >0 [4]

These equations are alternatively expressed by the inequalities:

x2 < y2 +e 2  
[51

y2 < x2 +e 2  [6]

This set of inequalities must be true for segment e to admit the normal vector. Point p of Figure 10 satisfies the
conditions.

Admissible Normal Vector Condition

Both base angles are acute.

p

n

e = segment of boundary

Figure 10. An edge is admissible If base angles are both acute.

In practice, it is more likely for the test to be failed than to be passed, so it makes sense to test first for

failure rather than for success. The failure condition may be written as the predicate

.. [ x2 < y2 +e 2 A y2< x2 +e 2 ] [71



From DeMorgan's rules, this may be rewritten

-'[x 2 <_ y2 +e 2 ] v _[y2<_ x2 +e 2 ] 181

which is equivalent to

x2 > y2 +e 2  v y2 > x2 +e 2  [91

If either side of disjunction [9] is true, then edge e is not admissible to the normal vector, and a potentially
expensive floating point operation is avoided by means of a simple integer-valued decision function. An example of
satisfaction of the second inequality of the disjunction is illustrated at the figure below. In this case, edge e fails the
admissibility condition, so that the normal vector computation is avoided.

Inadmissible Condition
A base angle is obtuse.

p ,_ __ _

nY

e = segment of boundary

Figure 11. An obtuse base angle precludes admissibility.

As a byproduct of the admissibility test, minimal distance to a vertex is returned. Consider the integer-
valued expression (Sp-Sv) 2 

+ (tp-tv) 2, where (sv,t,) is the coordinate at the vertex and (sp,tp) is the coordinate at the
query point. This expression is synonymous with either of the arguments x2 or y2 in equations [1]-[91 above.
Hence, the filtering operation as a side effect monitors the squares of the distances to each of the vertices of a
contour. When the smallest such expression is found across all vertex possibilities, the square root is extracted. The
entire process involves n integer-valued operations for n vertices, and one floating point operation, for a time
complexity of O[ n ]. The integer-valued operation here involves two integer multiplies, three integer adds, and an
integer comparison. The floating point operation is a single-shot appeal to the square root of the minimal integer-
valued result.



A Common Lisp unplementation of the edge admissibility test might appear as follows:

(defun admissible-normal-segment-p (x y ak ay b, by)
(a,, ay) and (b,, by) are the endpoints of segment e in figures; (x,y) is query point.

(prog (dislsqr dis2sqr dis3sqr)
(declare (type longint x y ak ay b, by dislsqr dis2sqr dis3sqr))
dislsqr = (dissqr a. ay b1 by)
dis2sqr = (dissqr x y ak ay)
dis3sqr = (dissqr x y b1 by)
(cond ((> dis3sqr (+ dislsqr dis2sqr))(return nil))

((> dis2sqr (+ dislsqr dis3sqr))(return nil))
(t (return t)))))

Finding the normal vector with minimum magnitude, across all segments.

Although we now have a test to determine which segments of a boundary admit the normal vector from a
query point, we have not said anything about the actual computation of the minimal such vector across all segments.
In this section we develop a new test to find the smallest normal vector, without resorting to any floating point
computations. If the actual magnitude is desired, two floating point operations are required over the entire database.
We appeal to a very useful result from analytic geometry, called the Cevian formula (for a development see [K I]). A
cevian is defined to be a line segment drawn from a vertex of a triangle to the opposite side. Note that medians,
angle bisectors, and altitudes are all examples of cevians. The Cevian formula is shown in the figure below, where n
is an altitude in this case. It is convenient that the altitude is equivalent to the normal vector under discussion. In
the figure, observe that rz and sz are lengths which sum to side z, whereas r and s are ratios which sum to one.

The Cevian Formula

InI 2 = ry2+sx 2-rsz 2,
where r = rz/z and s =sz/ z

p

n

rz Sz

z = segment of boundary

Figure 12. The Cevian formula relates a normal vector to the sides of a triangle.



Unfortunately, we do not know the values of r and s, because we do not know the point at which the
normal vector impacts side z. In the equations below, which until step [15] echo the discussion in [KI], we derive a
formula for the square of the magnitude of the normal in terms of a ratio involving the squares of the sides. Steps
[101-111 are a reiteration of the information conveyed by the figure. Steps [121-[13] involve a substitution for s,
followed by a reformulation as a quadratic equation in terms of r. In step [14] we set the discriminant equal to zero,
because the roots of equation [13] must be non-negative and equal, since r and s form a convex set. Solving this
equation for n2 results in the ratio shown at [15], which but for the divide operation is economical to compute, since
it involves four integer multiplies and three adds. If one were tuning the technique with assembly code, two of the
multiplies (those involving the 4) could be converted into two-bit left shifts, since shifts are cheaper than multiplies.

r= -- ;s= L-; r+ssl; r1 +s,=z [10]
Z z

n2 = 2 + Sx2 - rsz2  [111

n2 = ry2 + (I - r)x2 - r1 - r)z2 [121
z 2 r2 -- (X2 +1 Z2 _ y2 )r + (X2 _ n•2) = 0 (13]

(Z 2 
-y2 X2)2 - 4Z 2 (X 2 - n 2 ) = 0 [141

n2 4x2 - (x 2 + z 2 - y 2 ) 2  [15]

4z
2

What about the division by 4z2 , which implies a floating point operation? The answer is that in order to
find the normal vector of smallest magnitude, we may refrain from performing the division until all admissible
segments have been associated with a numerator and denominator as at [151, and checked against the shortest normal
vector found thus far. The check is made as follows. Let n1 be the normal dropped from a query point to segment
z1 , with x1 and yj the distances to the respective endpoints of zl. Let n2, z2 , x2, and Y2 be defined similarly. Then
the squares of the normals are shown respectively at [16] and [17]. Now n1 < n2 if and only if [19] and [201 are true,
but [20] is true if and only if the product of the means is less than the product of the extremes as shown at [21].
Cancelling the common factor produces test inequality [22]. Notice that if we are using integer-valued coordinates,
as we must if we are working with data displayed to a computer screen, there are no floating point expressions
involved in the test.

z 4 z2 2 (2 .z2 - 2)2
2= 4x- - (XI + -iY [161

4z

2 4x2z2 - (x2 +4 Z2 _ y) 2

42 2 [171

n, < n2 It [18]

nt n2 4* [19]
422 X2+Z2 22 4X2Z2 -(X2 2)2

4 1-(x+ -Y) < 2 Y2 [20
4Z2 44Z4 X2Z2 (X2 2 2)214Z2 <[x2z2 _2(x +.z2 _2)2 Z

[4x -(x +z - 14 2 < ([4 2 2-2 - ]4z (211

z[4x2z2 -(x2 + Z2 _ Z[44 _ (X2 + - _ [2212 [221 1 22 2



Using the test is simple. As input we receive a query point and candidate segment with integer coordinates.
The squares of the distances from the query point to the segment endpoints are computed with the usual Euclidean
formula, as is the square of the distance between the endpoints. These three quantities are used to compute the
integer-valued numerator and denominator of equation [15]. The same technique applied to some other candidate
segmen~t produces another numerator and denominator, which we cross-multiply with the first at inequality [221. If
the product of the means is less than that of the extremes, then the first segment is closer to the query point;
otherwise the second segment is closer. We continue this process until all segments are exhausted, remembering the
segment giving rise to the shortest normal vector as we do so.

Observe that we have located the nearest segment (according to the true Euclidean metric) to a query point
without resorting to any floating point arithmetic. Granted, we do not yet know the magnitude of the shortest
normal vector, but we know that we have the shortest. To obtain the magnitude, we merely need to perform the
division indicated at equation [15], and extract the square root of the result. Note also that we never had to compute
any of the points of a line segment; we were able to make do with the vertices at its endpoints. This latter artifact
demonstrates the power and leverage of the Cevian formula, developed over three centuries ago. The formula may
potentially be used to assist in the generation of the parabolic Voronoi diagram for line segments and polygons.

We briefly summarize before moving on to the next section. When the two-dimensional binary search
paradigm reauests the inclusion algorithm to decide whether or not a query point is contained within a specific
contour, the inclusion algorithm is handed the counterclockwise-oriented set of contour vertices and the query point
as arguments. The first action taken by the inclusion algorithm is to subject all of the implied edges of the contour
to the normal vector admissibility test, maintaining the squared distances to the vertices on the side. Generally, the
test returns just a handful of edges admissible to the normal vector. To each of these, the cross-product test shown at
[22] is performed to locate the minimal normal vector. This quantity is compared against the minimal result
obtained for the vertices. If the square of the distance to an edge is smaller than the squared distance to a vertex, a
test is invoked to decide if the query point is to the left or the right of the edge; if to the left, the point is inside the
contour, and if to the right, the point is outside. At this time the numerator and denominator of equation (15] may
be divided and the square root extracted to obtain the actual magnitude of the normal vector. If the squared distance to
a vertex is smaller than that to an edge, a synthetic edge is constructed from the vertex's predecessor and successor
vertices in the contour boundary, and a test is invoked to decide if the vertex is to the left or the right of the
synthetic edge; if to the left, the query point is inside the contour, and if to the right, the point is outside. The
square root may be extracted to obtain the magnitude of the normal vector. The shortest normal vector points to
either the inner or the outer bracketing contour of the query point.

IV. INTERPRETATION OF A QUERY POINT IN THE CONTEXT OF A MAP.

Binary search of a contour containment graph concludes by returning the two bracketing contours of a query
point. The algorithm is now armed with all the information it requires to produce an "interpretation" of a query
point, as defined in the first section of the paper. If either bracket has inherited the name of a mountain, hillside,
crater, etc., for which the bracket is a structural element, then the name is available for simple display, or for further
spatial reasoning operations such as line-of-sight or traversibility reasoning. Because inclusion testing as described
above returns as a byproduct the normal vector from a query point to a contour, both the distance to the outer bracket
and the distance to the inner bracket are known when binary search completes. These two distances may be used in
conjunction with the contour interval of the map to obtain estimates for the point's elevation and slope. The
direction from a hilltop to the query point, together with the elevation values and orientation of the bracketing
contours, may be used to determine a directional gradient, which establishes upon which flank of a hillside a query
point resides. The details involved in extracting the elevation, the slope, and the directional gradient are described
below.



Deriving the elevation of a query point from its bracketing contours.

Once the bracketing contours for a query point have been established, it is a simple matter to compute an
interpolated elevation at the query point. Without loss of generality, let us assume p is on an uphill slope from
outer bracket C to inner bracket C+, as depicted at the figure below. The elevation of query point p, denoted El(p),
may be obtained by using similar triangles to compute an expression which accounts for p's relative location
between the contours, and multiplying it by the fixed contour interval of the map. To this expression is added the
baseline elevation at ps outer bracket (if p were on a downhill slope, the expression would be subtracted instead).
Special cases require additional processing. If a query point has an outer bracket but no inner bracket, as it will when
it resides within a contour which represents a hilltop, and there are no control points available to indicate the actual
elevation at the hilltop, then the query point inherits the elevation of its outer bracket, since interpolation is
impossible. If a control point is available (generally obtained by surveyors with a spirit level, and represented on the
map with an "X" or a delta symbol), then interpolation is possible even in the absence of an inner bracketing
contour. One simply coerces the inner bracketing contour to be the control point, and temporarily sets the map
contour interval to be the difference between the elevation of the control point and the elevation of the outer bracket.
Downhill slopes, craters, saddles, and culverts may be treated with similar logic.

Interpolating the Elevation
Between Bracketing Contours

In¢1

El(p) = El(C) + dy

C+

p d
C El(p)

nc nc+

Figure 13. Elevation is obtained through simple linear Interpolation.



Obtaining the slope at a query point from its bracketing contours.

The local slope at a query point is so simple to estimate that even interpolation is not required. It is
simply the angle with a tangent equal to "the rise over the run". The "rise" is fixed, as it is given by the contour
interval of the map. The "run" is defined to be the sum of the magnitudes of the normal vectors drawn to the outer
and inner bracketing contours. At the top of a hill or at the base of a depression, in a saddle or a culvert, the slope is
assumed to be zero, for flat ground. However, if a control point is available to provide additional elevation data, then
logic similar to that outlined for elevation in the paragraph above may be utilized to obtain a refined estimate of
slope. Outside the limits of the lowest lying contours, the algorithm is designed to return the string "drainage area",
which again is assumed to be flat ground. There may or may not be a perennial stream flowing through a drainage
area, but during flashfloods it is assumed that water would flow there.

Note that a peculiar thing happens if we slide the query point along either of the normal vectors pointing to
the bracketing contours. The slope remains fixed as we do so. This is the price we pay for approximating a terrain
by a set of cross-sectional contours. The computed slope cannot be made more accurate than the resolution imposed
by the contour interval of the map. Thus, between any two nested contours, there is a vector field of slope vectors
which connect every digital point of the inner bracket with some digital point of the outer bracket, and vice versa.

Computing the Slope
Between Bracketing Contours

Slope = arctan [ dy / dx ]

dy is given by the contour interval

C+

S~dy = 10 meters

... "' nc+-- 4

C

I dx=Inc I+ Inc+ I

Figure 14. The "rise" is fixed, and the "run" is the sum of the normal vector magnitudes.



Obtaining the directional gradient at a query point from its bracketing contours.

Again, assume the familiar example of an uphill slope, so that El(C) = El(C+) - k, where k is the fixed
contour interval of the map. Construct the vector from the hilltop to the query point. Define the hilltop to be the
control point at the top of the hill if it exists; otherwise make it some reasonable estimate, such as the centroid of
the topmost contour. If there are multiple topmost contours, then make the hilltop the centroid of them all.
Suppose that the hilltop to query point vector points to the left, as in the figure below. Then it is pointing
downhill, because C's elevation is less at that of C+, and it is pointing to the west, since due north is as shown by
the map. The query point is therefore on the western flank of a hillside. Variations on this theme are computable
for other configurations of terrain. If the elevation of C is greater than that of C+, and we observe a leftward-
pointing vector, then we would be on the western flank of a crater or valley. If the elevation of C was to be equal to
that of C+ and the vector was to point to the south, then the query point would be on a saddle or in a culvert,
oriented in an east-west fashion.

The vector pointing from a hilltop to a query point is a suitable gauge of directional gradient from a global
perspective. However, a query point may be situated locally on a geologic feature of a hillside, with an orientation
seemingly at odds with the global result. For example, on the south side of a mountain, there may be a ridge which
proceeds from the summit down to the south. The ridge will have both eastern and western flanks. Suppose for the
sake of argument that a query point is on the western flank of the ridge. We conclude it is possible for a query point
to be locally on a western flank, but globally on the south side of the mountain. The local flank estimate is easily
computed by drawing the normal vector from the query point to its outer bracketing contour. The vector points in
the compass direction of the local gradient. This procedure is particularly useful for rugged terrain such as that
encountered on Mount Rainier in the state of Washington, where contour data tends to resemble a set of nested
"octopuses".

Computing the Directional
Gradient on Hillsides

Magnetic north is given by map.

",,N

C+
C

P

P is on a western flank of moderate gradient.

Figure 15. Determining a query point's emplacement on a hillside.



V. AN IMPLEMENTATION, AND CONCLUSIONS.

The theory of automated topographic map interpretation, as developed to date, has been partially
implemented on a Macintosh IIfx workstation, using Macintosh Common Lisp, version 2.0. There are plans to
convert the code into C, using the Symantec Think C environment. The conversion is intended not so much for
performance purposes, since the Lisp compilers performance is favorable when compared to that of the Symantec
package, but to be able to control the process of garbage collection, which in the Lisp package is beyond the reach of
the user.

There are two databanks of contour data. real and simulated. The first source of the real variety is a set of
digital elevation matrix (DEM) data, which is a gridded representation of elevation values sampled at equispaced x and
y increments. DEM data is produced by the United States Geographical Survey (USGS) office, as a result of data
collection performed primarily by civilian engineers. To obtain topographical contours from DEM data, one may
utilize a geographic information system (GIS) to extract contiguous points of equal elevation from the grid. The
author used an on-the-shelf GIS package called Macgrizo [MI] to create contours for the Killeen Texas area. The
second source of real data, which is the military counterpart to DEM data, is digital terrain elevation data (DTED),
which currently is available in two resolutions: Level I, at 100 meter spacing, and Level II, at 30 meter spacing.

The simulated data is handcrafted by appealing to Macintosh Quickdraw graphics. A representative &errain
containing four hillsides is depicted in the figure on the next page, where a query point is represented by the tip of
the cursor (the arrowhead at the right). In this case, the partitioning algorithm during a preprocessing step created
level one and level two cuts to segregate the four hillsides. The level three cuts and beyond partitioned each of the
individual hills, using the nesting principle described earlier. Now comes execution time, and two-dimensional
binary search. In this example, hills two and four were selected in the first binary cut, and hill two in the second
cut. In the third cut, it was determined that the query point was not inside hill two's forty meter contour, in the
fourth cut it was determined that the point was inside the twenty meter contour. Binary search concludes at this time
because the contour containment graph has been exhausted. Therefore, the outer bracket is hill two's twenty meter
contour, and the inner bracket is the forty meter contour. Associated with each of these two contours is the label
"HILL2". The gradient computation deduces an easterly downhill slope; the slope is computed to be forty eight
degrees; and the elevation interpolates to thirty three meters. Currently, the interpretation process says nothing
about the relationship among HILL2 and the other hills; future work will address this issue.

Future Work.

The research to date has focused on a local interpretation of a query point. By definition, a local
interpretation is limited to a description of a query point in terms of the label of the hill upon which it resides, the
two contours which bracket it, an interpolated elevation, a slope value, and a directional gradient. This information
is useful for localized reasoning about the immediate environs of a query point. A natural outgrowth of this work is
to extend the reasoning to a more global capability. For example, one could utilize knowledge about the location of
a hillside with respect to other hillsides in a specific region, to achieve context-cued line of sight reasoning or
traversibility planning.

To illustrate line-of-sight reasoning, consider the following example, based on the author's personal
experience. In Grand Teton National Park in Wyoming, if one is on the western shore of Jenny Lake, the tallest
visible peak is Teewinot Mountain, which looms spectacularly nearly a mile above the observer's head. One peak
away is the Grand Teton, which although a thousand feet higher, may not even be seen from this vantage point
because it is blocked from sight by Teewinot. The interpretation process described in Section IV would determine
that the query point is on the eastern flank of Teewinot Mountain, on a moderate slope, at about 6600 feet elevation.
Utilization of the directional gradient calculation would indicate that the direction to the tops of Teewinot and the
Grand Teton are roughly the same, but the slope of the segment joining the query point to the top of Teewinot is
greater than that drawn to the top of the Grand Teton. Hence, one concludes that line-of-sight westward to the Grand



is restricted by the intervening mass of Teewinot. Future work will involve refining and formalizing concepts such
as these.

Already, the normal vector admissibility filMeting technique has been extended to objects other than
topographic contours. The Defense Mapping Agency produces a set of vector overlays corresponding to a
transportation network, a hydrology network, obstacles, surface orientation, surface composition, and vegetation
type. In additit,, the DMA produces a gridded product called digital terrain elevation data (DTED), at both thirty and
one hundred meter horizontal resolution. The vector products together with thirty-meter DTED in large part
comprise what is known as tactical terrain data (CTD), a database being developed by DMA with the cooperation of
the US Army Topographic Engineering Center (M21. The integer-based decision rule derived from the law of cosines
has proven to be of high utility in gauging proximity and inclusion with respect to the multi-megabyte vector
databases contained in TTD.

Global location: HILL2

Flank of hill: EAST
Slope in degrees = 48
Elevation in merers = 33

Figure 16. Interpreting a query point in terrain.
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Conclusions.

Two-dimensional binary search has been utilized in conjunction with two new algorithms which avoid the
expensive floating point operations associated with computing the normal vector, to produce an algorithm adept at
locally interpreting topographic line maps. An interpretation consists of a human-like description of a query point
in terms of its global location, interpolated elevation, local slope, and directional gradient. The search algorithm
relies heavily upon proximity and inclusion algorithms developed with computational geometry research funded by
the US Army. For credibility, the technique is being leveraged against multi-megabyte databases of contour
information corresponding to actual terrain. An integer-based decision function which arbitrates when to drop the
normal vector to an edge (during proximity testing) has proven to be extensible to objects other than elevation
contours, such as segments of roads and streams, and polygons delimiting types of vegetation cover and surface
material composition. As a byproduct of the research, an algorithm based on the ancient Cevian formula has been
developed to find the nearest segment to a query point, without using any floating point operations whatsoever.
New work will focus on extending the definition of map interpretation to be more globally descriptive of a terrain.
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